Tuberculosis Diagnostics: *Moving towards the point-of-care*

Paul Drain, MD, MPH, FACP

Assistant Professor, University of Washington Visiting Scientist, Harvard Medical School

April 15, 2016

DISCLOSURE

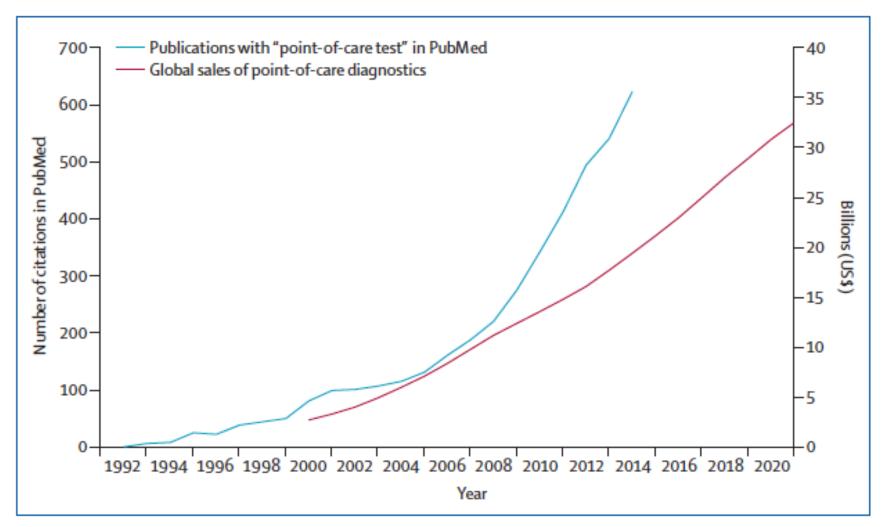
The following planner/speaker has reported a relevant financial relationship with a commercial interest:

- None.

Outline

- Overview of POC Diagnostics
- TB Pathogen Biomarkers
- Host Biomarkers for TB
- Conclusion

POC Diagnostics - History

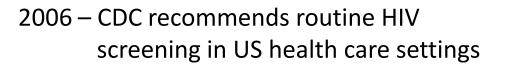

- 1957 Urine dipstick for albumin, blood, and acetone
- 1962 First rapid test to measure blood glucose¹
- 1993 Small portable devices measure multiple serum electrolytes^{2,3}
- 2002 "Medical test conducted at or near the site of patient care"⁴
- 2012 First POC test for a human genetic allele⁵

POC Diagnostics – Scope & Settings

Disease or Specialty	Diagnostic Point-of-care Test
Cardiology	Creatine Kinase-MB; Troponin I; Troponin T; Brain Natriuretic Peptide; N-Terminal Prohormone of Brain Natriuretic Peptide; Human-type Fatty Acid Biding Protein; Myosin Light Chain-1; Myoglobin
Endocrinology	Glucose; Hemoglobin A1c; Urine Microalbumin Cholesterol; C-reactive Protein; Lactate
Gastroenterology	Fecal Occult Blood; Liver Function Tests
Hematology	Hemoglobin; Prothrombin time; D-dimer
HIV/AIDS	HIV Antigen; HIV Antibody; CD4 T cell count
Infectious Diseases (non-HIV)	Group A Strep; Influenza A & B; Parainfluenza; Respiratory Syncytial Virus; Syphilis; Chlamydia; Falciparum-Malaria; Hepatitis C; Tetanus; Tuberculosis; Cryptococcus; Visceral Leishmaniasis; African Trypanosomiasis
Nephrology	Urinalysis; Urine Microalbumin; Serum Creatinine
Neurology	Nerve Conduction Device
Obstetrics	Pregnancy and Ovulation Prediction Tests
Pulmonology	Airflow Meters
Medical Settings	Commonly Used Point-of-care Test
Emergency Room	Serum Electrolytes; Medication Levels; Drugs of Abuse; Blood Alcohol Level; Troponin-I; Troponin-T; Lactate; Arterial Blood Gas
Intensive Care Unit	Serum Electrolytes; Ionized Calcium; Magnesium; Arterial Blood Gas; Blood pH; Glucose; Lactate; Hemoglobin; Prothrombin Time
Primary Care Clinic	Urinalysis; Pregnancy Test; Group A Strep; HIV Antibody; Fecal Occult Blood
	Drain DK et al. Langet Infectious Diseases 2012

Drain PK et al., Lancet Infectious Diseases, 2013.

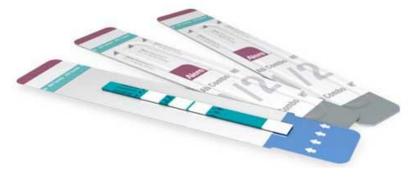
Figure: Estimated annual research and global market for point-of-care diagnostics

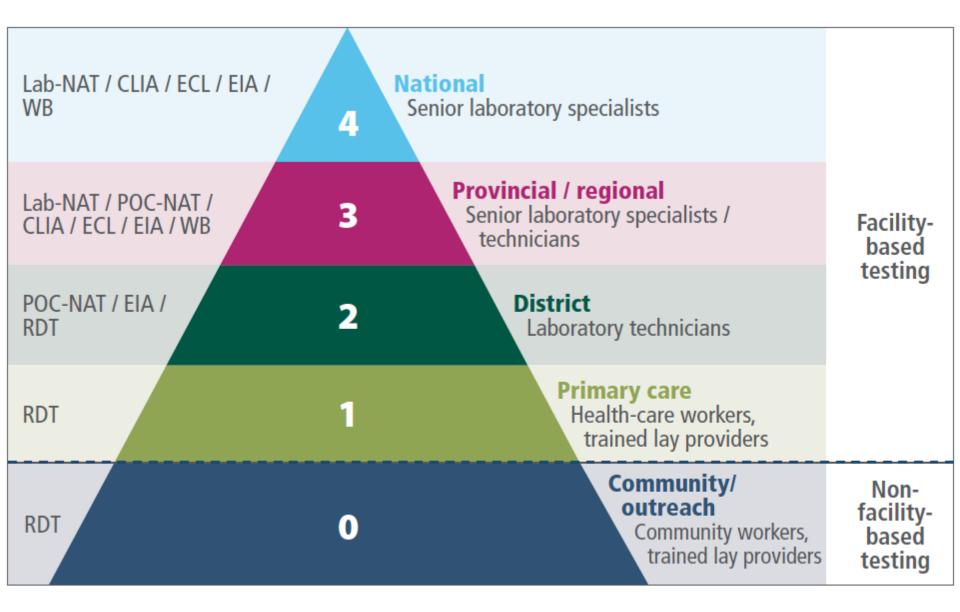

The annual number of citations was determined by a customised search in the PubMed database for the term "point-of-care test". The estimated global market data were provided by Visiongain.¹¹

Drain PK et al., Lancet Global Health, 2015.

Rapid Diagnostic Test for HIV/AIDS

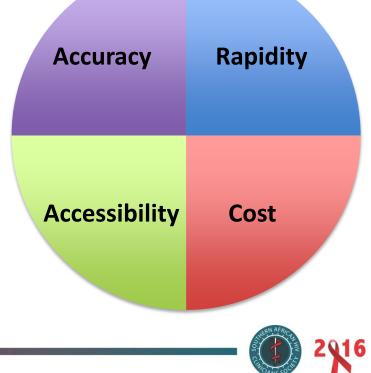
2002 – First rapid HIV test using finger prick




- 2007 WHO/UNAIDS recommend routine HIV screening in health care settings
- 2012 First rapid HIV test for oral fluid home test

From 2010 to 2014, used to test <u>600 million adults</u> in 122 low- and middle-income countries

Kaiser Family Foundation, HIV testing in the US, 2014. World Health Organization. HIV Testing Services. WHO. July 2015.


Lab-NAT: laboratory-based nucleic acid testing; POC-NAT: nucleic acid testing at point-of-care; CLIA: chemiluminescence immunoassay; ECL: electrochemiluminescence immunoassay; EIA: enzyme immunoassay; WB: Western blot; RDT: rapid diagnostic test.

WHO. Consolidated Guidelines on HIV Testing Services, 2015.

Evaluation of POC Diagnostics

- 1. Diagnostic Accuracy
 - Sensitivity/Specificity
 - Likelihood ratio
 - Area under receiver operating curve
- 2. Clinical Effectiveness
 - Time to therapy
 - Retention in care
 - Survival
- 3. Cost Analyses
- 4. Cost-Effectiveness Analysis

Drain PK et al., Lancet Infectious Diseases, 2013.

Rapid Diagnostic Test for HIV/AIDS

Accuracy – ~98% sensitive/specific

Rapidity – 20 minutes

Accessibility – Lateral flow assay; Finger prick whole blood

Cost – ~\$2/test

Drain PK et al., Lancet Infectious Diseases, 2013.

POC Diagnostics – Summary

- POC diagnostics are rapidly emerging and evolving
- Potential for real clinical impact, particularly in primary care clinics and community/outreach
- Trade-offs with Accuracy, Rapidity, Accessibility, Cost
- Adoption of a POC test will <u>not</u> always translate to clinical impact or cost-effective results

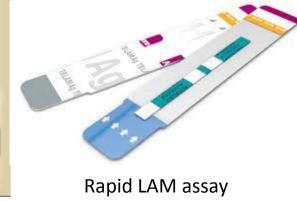
Outline

- Overview of POC Diagnostics
- **TB Pathogen Biomarkers**
 - Xpert MTB/Rif
 - Urine LAM
- Host Biomarkers for TB
- Conclusion

History of TB Diagnostics

1821 – Laennec invented stethoscope and described utility in diagnosing TB
1882 – Koch presented TB bacilli as the infectious agent of TB on March 24
1895 – Roentgen invented chest X-ray and used to track TB progression
1890s – Franz Ziehl/Friedrich Neelson developed acid-fast stain for TB
1908 – Mantoux developed tuberculin skin test for latent TB
1936 – Solid culture introduced to grow and identify TB

In 2010, ~53% of clinics in Africa had access to Mycobacterial culture*


1980 – Liquid culture

2008 – Line probe assay 2010 – Xpert MTB/RIF assay 2011 – Rapid LAM assay

Robert Koch, Nobel Prize in 1905

Xpert MTB/RIF assay

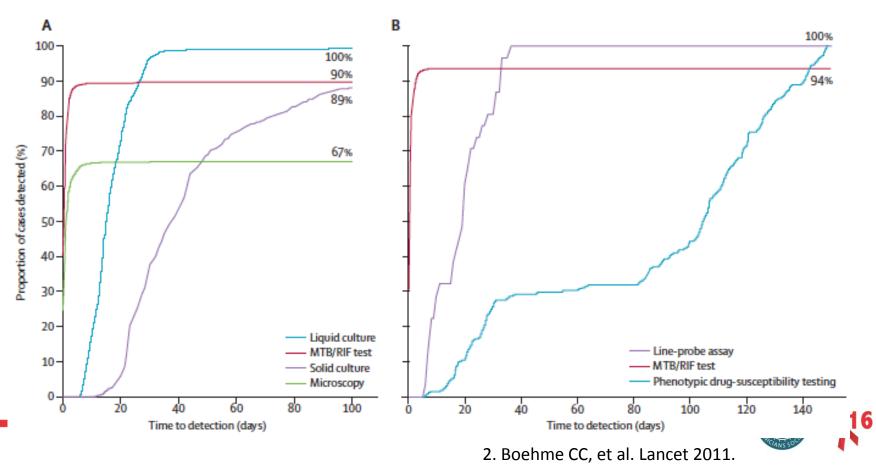
Accuracy

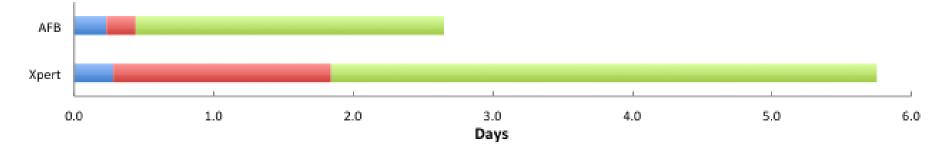
- Cochrane Review (27 studies, 9,557 people)⁷
 - Pooled
 - HIV+
 - Smear-neg

- sensitivity 89%; specificity 99%
- sensitivity 79%
- sensitivity 67%

- Rapidity ~2 hours
- Accessibility Unprocessed sputum, Requires electricity, WHO endorsed
- **Cost** \$5,000-20,000/machine, \$10-15/cartridge (subsidized)

By July 2015:


- Over 4,000 GeneXpert Systems in use worldwide
- 13 million Xpert MTB/RIF cartridges shipped


Xpert MTB/RIF assay

- FIND (Foundation for Innovative New Diagnostics) Study²
 - 6,648 patients with suspected TB in 6 countries (2009/10)
 - Performed same-day Xpert, smear microscopy, and TB culture

Real-world TB Diagnostics in Durban (n=414)

All Participants

AFB Xpert 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Days Specimen transport to lab Laboratory processing Result transfer to clinic

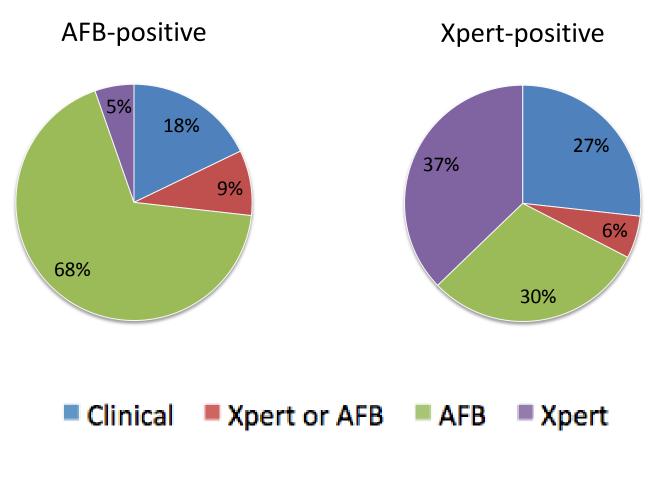
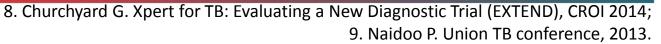

Laboratory-confirmed pulmonary TB

Figure 1. Median time between consecutive events from sputum specimen collection to a clinician's receipt of test results, for AFB and Xpert tests.

Cohen G, Drain PK, et al. J AIDS, 2014.

Reason for starting TB therapy (N=414)



Cohen G, Drain PK, et al. J AIDS, 2014.

Xpert in South Africa

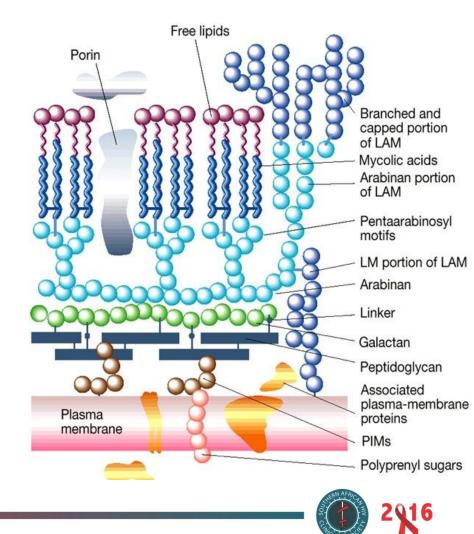
- EXTEND Trial⁸
 - 4,656 patients (62% HIV+) with suspected TB in South Africa
 - Randomized to <u>central lab-based testing</u> with 1 Xpert vs. 2 smear microscopy tests (40 clinics, 20 labs)
 - Primary Outcome Treatment Initiation
 - Results
 - <u>No</u> difference in rate of Treatment Initiation
 - Mortality was <u>same</u> between study arms
 - Study Conclusion:
 - Xpert in central lab did <u>not</u> improve clinical diagnosis
 - Scale up of a new diagnostic tool requires a strong health system
- A real-word implementation of Xpert based on empiric data from Western Cape, South Africa was <u>not</u> cost-effective⁹

Xpert in South Africa

- TB-NEAT Study
 - Randomized, "pragmatic" clinical trial in 4 African countries
 - 1,502 patients presenting with TB-related symptoms
 - Nurse-led diagnosis of Xpert vs. sputum-smear microscopy
 - Xpert testing done a <u>clinical point-of-care</u>
 - Primary Outcome patient morbidity at 2- and 6- months
 - Results:
 - Xpert had greater diagnostic sensitivity (83% vs. 50%)
 - Xpert led to more same-day Rx initiation (23% vs. 15%)
 - By 2-months Rx rate was same in both groups (43% vs. 42%)
 - Primary outcome (morbidity) had <u>no difference</u> b/n study arms

Conclusion: Too much empirical treatment among smear-neg (i.e. didn't trust negative smear microscopy result)

Theron G, et al. Lancet, 2013. Theron G, et al. Lancet ID, 2014.


Lessons from Xpert

- Adoption of a POC test may not always translate to clinical impact or cost-effective results
- Location and Comparison for a POC test matters
- But, how do we assure quality control and oversight of clinic-based POC testing?

Lipoarabinomannan (LAM)

- Molecular weight is 17.3 KDa, comprises ~60-70% of the *M*. *tuberculosis* cell wall
- Released from metabolically active or degenerating bacteria, and secreted from infected alveolar macrophages
- LAM can be recovered from *in vitro* cultures of *M. tuberculosis*
- Detectable in serum and excreted in urine of people with active TB disease

Arrival of Urine LF-LAM Assay

Format – *rapid immunochromatographic assay*

Volume – 60 microliters of urine

Time – 25 minutes

Accessibility – Not sputum-based, no electricity, no machine *Cost* – \$3.00/test

Urine LAM Study #1

Study Design:

- Prospective <u>clinic</u>-based study in Durban
- LAM test performed by nurses at clinical POC
- Gold standard: Sputum TB culture

Cohort:

360 newly-diagnosed HIV+ (med. CD4 182/mm³)

Results:

	Sensitivity (95% Cl)	Specificity (95% CI)
Urine LAM	28% (18-41)	90% (86-93)
Sputum AFB	18% (10-30)	95% (92-98)

Drain PK et al. BMC Infect Dis, 2014.

Urine LAM Study #2

Study Design:

- Prospective <u>clinic</u>-based study in Durban
- LAM test performed by nurses at clinical POC
- Gold standard: Sputum TB culture

Cohort:

320 newly-diagnosed HIV+ (med. CD4 248/mm³)

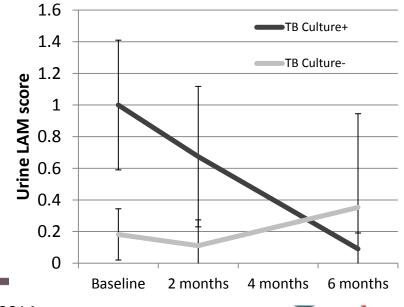
Results:

)	Sensitivity	Specificity	
	%	%	
Sputum AFB Smear	15	99	
Urine LAM – Test #1			
≥"faint"	41	90	
	Sensitivity	y (95% CI)	Specificity (95% CI)
CD4 >100	24% (9-45	5%)	95% (91-98%)
CD4 <100	56% (35-7	75%)	80% (64-91%)
5+	6	98	

Drain PK et al. J AIDS, 2015.

Urine LAM Study #3

Study Design:


- Prospective hospital-based study in Durban
- Gold standard: Sputum TB culture

Cohort:

- 90 TB suspects (93% were HIV+; med. CD4 182/mm³)
- All patients started on anti-TB therapy for 6 months
- Urine LAM testing at baseline, 2-months, and 6-months
- All patients followed for ≥3 years to assess mortality

Results:

	Sensitivity	Specificity	
	% (95% CI)	% (95% CI)	
Sputum AFB Smear	21 (11-34)	94 (80-99)	
Rapid Urine LAM			
≥1+ score	42 (29-56)	85 (68-95)	
≥2+ score	23 (13-36)	97 (84-100)	
≥3+ score	16 (8-28)	100 (89-100)	
≥4+ score	12 (5-24)	100 (89-100)	
5+ score	7 (2-17)	100 (89-100)	

Drain PK et al. BMJ, 2014.

Comparison of Urine LF-LAM Studies

	Sensitivity	Specificity
	% (95% CI)	% (95% CI)
Clinic-based Studies (asymptomatic screening)		
Lawn, Retrosp., New HIV+, Cape Town	28 (19-39)	99 (97-100)
Drain, Prosp., New HIV+, Durban – study #1	28 (18-41)	90 (86-93)
Drain, Prosp., New HIV+, Durban – study #2	41 (28-55)	92 (89-95)
Hospital-based Studies (symptompatic diagnostic)		
Peter, Retrosp., HIV+ TB suspects, Cape Town	66 (57-74)	66 (57-73)*
Dorman, Prosp., HIV+ TB suspects, SA/Uganda	62 (57-67)	78 (75-81)
Van Rie, HIV+, extrapulm TB suspects, Jo-burg	69 (56-82)	92 (88-96)
Shah, Retrosp., HIV+ TB suspects, Uganda	63 (53-72)	88 (80-93)
Drain, Retrosp., HIV+ TB suspects, Durban	42 (29-56)	85 (68-95)

* Specificity increased to 90% (82-95%) when using a non-TB control group.

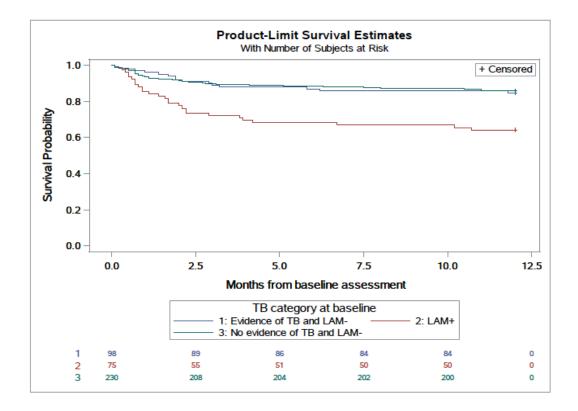
WHO Recommendation on Urine LF-LAM Assay

- LF-LAM may be used to assist in the diagnosis of TB in HIV-positive adult inpatients with signs or symptoms of TB (pulmonary and/or extrapulmonary) who have a CD4 cell count ≤100 cells/µL, or HIV-positive patients who are seriously ill* regardless of CD4 count or with unknown CD4 count (conditional recommendation; low quality of evidence).
 - This recommendation also applies to HIV-positive adult outpatients with signs and symptoms of TB (pulmonary and/or extrapulmonary) who have a CD4 cell count less than or equal to 100 cells/μL, or HIV-positive patients who are seriously ill regardless of CD4 count or with unknown CD4 count, based on the generalization of data from inpatients.
 - This recommendation **also applies to children**, based on the generalization of data from adults while acknowledging very limited data and concern regarding the low specificity of the LF-LAM assay in children.
- 2. LF-LAM should <u>not</u> be used as a screening test for TB (strong recommendation; low quality of evidence)

 * "seriously ill" is defined based on four danger signs: respiratory rate > 30/min, temperature >39 C, heart rate >120/min and unable to walk unaided.

Hospital-based LAM Implementation

Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial


Jonny G Peter*, Lynn S Zijenah*, Duncan Chanda*, Petra Clowes*, Maia Lesosky, Phindile Gina, Nirja Mehta, Greg Calligaro, Carl J Lombard, Gerard Kadzirange, Tsitsi Bandason, Abidan Chansa, Namakando Liusha, Chacha Mangu, Bariki Mtafya, Henry Msila, Andrea Rachow, Michael Hoelscher, Peter Mwaba, Grant Theron, Keertan Dheda

- Randomized, pragmatic trial
 - 2,659 HIV+, hospitalized patients with suspected TB
 - Randomized to <u>urine LAM plus routine TB testing (AFB smear,</u> <u>Xpert, culture</u>) versus routine TB testing (10 hospitals)
 - Primary Outcome 8-week all-cause mortality
 - Results
 - LAM group 21% mortality (261 patients)
 - No LAM group 25% mortality (317 patients)
 - Study Conclusion:
 - LAM testing had an absolute mortality reduction of 4%
 - Likely to benefit patients presenting with severe illness

Clinic-based LAM Implementation

• Clinic-based urine LAM screening at HIV diagnosis predicts mortality in a TB-endemic region

Drain PK, et al. under review

Summary of Urine LAM

- Advantages
 - Can be conducted at clinical POC by nurses
 - Non-sputum based (safer for HCWs)
 - Simple LFA with no machinery/electricity
 - Diagnose extrapulmonary TB
 - Applicable for diagnosing children
 - Marker for treatment response
 - Inexpensive
 - Good Diagnostic Specificity
 - Better among TB-suspects, high bacillary load, sicker pts
- Disadvantages
 - Low/Moderate Diagnostic Sensitivity

Outline

- Overview of POC Diagnostics
- TB Pathogen Biomarkers
- Host Biomarkers for TB
 - C-reactive protein
 - Transcriptional Signature
- Conclusion

Rapid TB Diagnostics

Diagnostic Tests

"Rule IN" test (high specificity)

- AFB smear microscopy
- Urine LAM
- Xpert MTB/RIF
- other nucleic acid tests

Screening Tests

"Rule OUT" test (high sensitivity)

- Symptom screening
- C-reactive protein
- D-dimer, haptoglobin
- Many cytokines, others

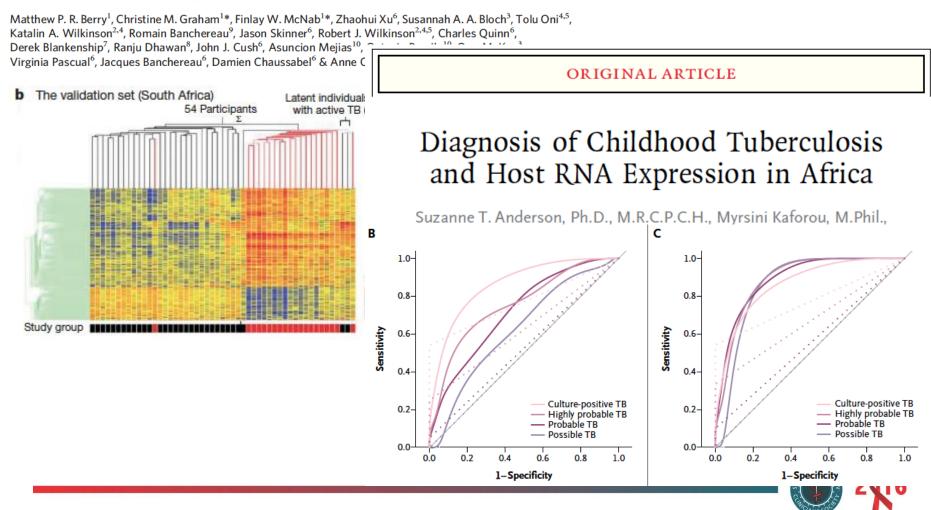
Rapid C-reactive Protein (CRP)

Accuracy – sensitivity ~90%; spec ~70%

Rapidity – 10 minutes

Accessibility – Finger prick whole blood assay with a small portable device

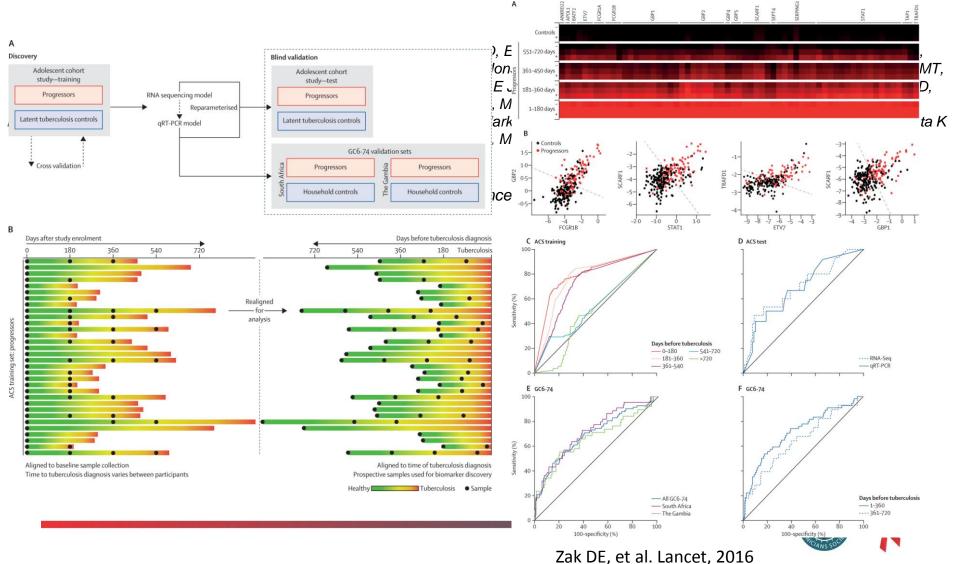
Cost – \$3.50/test


Hospital-based CRP Study

- Prospective study at Edendale Hosp., Pietermaritzburg
- 90 TB-suspects; All HIV+ (med. CD4 177/mm³)
- Nurses performed rapid CRP on finger prick whole blood; obtained lab-based CRP test
- All patients received independent nurse and physician assessments

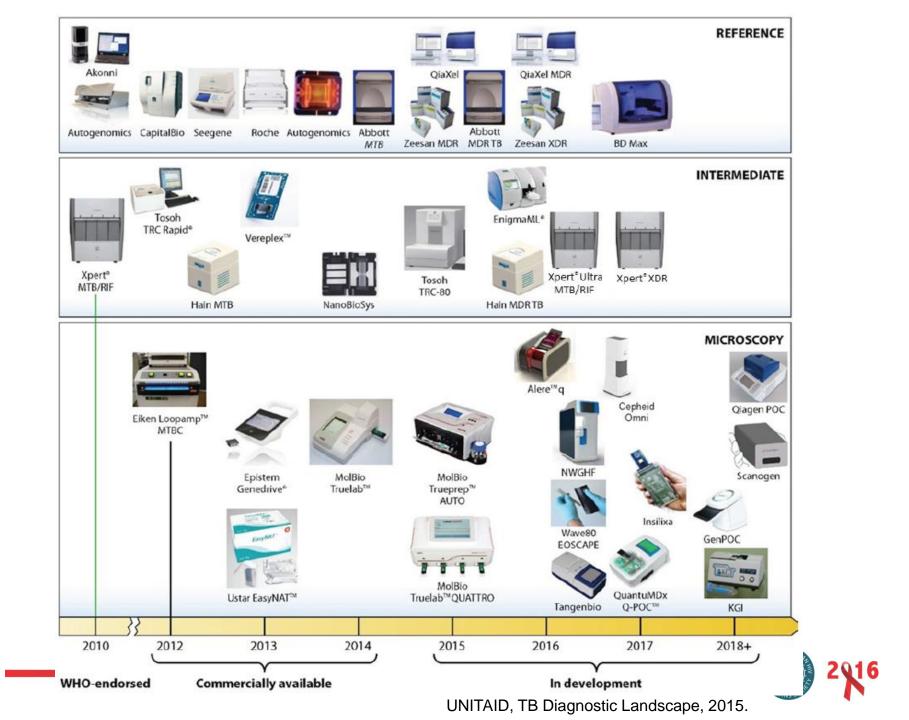
	Sensitivity	Specificity	
	% (95% CI)	% (95% CI)	
Rapid C-reactive protein			
CRP ≥10 mg/l	95 (83-99)	51 (36-66)	
CRP ≥25 mg/l	77 (61-89)	73 (58-85)	
CRP ≥50 mg/l	59 (42-74)	87 (73-95)	

Host Transcriptional Signature


An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis

Berry MPR, et al. Nature, 2010; Anderson ST, et al. NEJM, 2013.

Host Transcriptional Signature


A blood RNA signature for tuberculosis disease risk: a prospective cohort study

Outline

- Overview of POC Diagnostics
- TB Pathogen Biomarkers
- Host Biomarkers for TB
- Conclusion

GeneXpert[®] Omni

- Developed by Cepheid and FIND
- Announced July 28, 2015
- Small (23 cm tall)
- Lightweight (1 kilogram)
- Easy to use
- Powered by a rechargeable battery
- Wireless connectivity

Drain PK et al., Lancet Global Health, 2015.

The arrival of a true point-of-care molecular assay—ready for **global implementation**?

*Paul K Drain, Nigel J Garrett

Department of Global Health and Department of Medicine, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA (PKD); Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (PKD); and Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa (NJG) pkdrain@uw.edu

- 1. Agree on regulatory assurances and QC measures to ensure oversight for maintaining the accuracy of diagnostic testing
- 2. Understand whether clinic-based testing might place additional strain on laboratory system, or whether POC testing could help offload the burden on laboratory workers
- 3. Develop clear guidance on the adoption of novel point-of-care tests

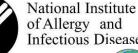
Acknowledgements

- **Research Team:**
 - Sabina Govere
 - Meighan Krows _
 - Esihle Mathontsi _
 - Grace Muwisa
 - Simo Nkilana
 - Tivani Mashamba
- International Clinical Research Center/UW:
 - **Connie Celum** _
 - Jared Baeten _
 - **Ruanne Barnabas**
- Collaborators in South Africa:
 - Yunus Moosa, UKZN/King Edward Hospital _
 - Pravi Moodley, UKZN _
 - Doug Wilson, UKZN/Edendale Hospital _
 - Slim Abdool-Karim, CAPRISA _
 - Nesri Padavatchi, CAPRISA _
 - Nigel Garrett, CAPRISA _
 - Kogie Naidoo, CAPRISA _
 - Hilary Thulare, AHF/iThembalabantu Clinic
 - Al Leslie, K-RITH _
 - Jacques Grosset, K-RITH/Johns Hopkins U. _
- Collaborators in U.S.:
 - Ingrid Bassett, MGH/Harvard _
 - Kenneth Freedberg, MGH/Harvard _
 - Mehmet Toner, MGH/Harvard _
 - Bruce Walker, MGH/Harvard _
 - Bill Rodriguez, Daktari Diagnostics Inc. _
 - Dan Kuritzkes, BWH/Harvard _
 - Wafaie Fawzi, Harvard School Public Health _
 - Bill Powderly, Washington University _
 - Alex Revzin, U. California Davis _
 - King Holmes, U. Washington _
 - Bill Bishai, Johns Hopkins U. _

- **Funding Support:**
 - Harvard T32 Program for AIDS Clinical Research Training (T32 AI007433)
 - NIH Fogarty International Clinical Research Program (R24 TW007988)
 - NIH National Institute of Allergy and Infectious Diseases (K23 AI108293-01)
 - Harvard University Center for AIDS Research (CFAR) (P30 AI060354)
 - Infectious Disease Society of America (IDSA) Merle Sande Award
 - **HIV Medicine Association (HIVMA)**
 - KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH)
 - Harvard Global Health Institute
 - **NIH Loan Repayment Program** _
 - Partners Healthcare, Center of Expertise in Global & Humanitarian Health
 - Massachusetts General Hospital, Medical Practice Evaluation Center
 - Massachusetts General Hospital, David Brudnoy Scholar Award _
 - Massachusetts General Hospital, Executive Committee on Research _
 - Brigham and Women's Hospital, Biomedical Research Institute

MASSACHUSETTS MGH GENERAL HOSPITAL

> MEDICAL PRACTICE **EVALUATION CENTER**



TER FOR AIDS RESEARCH

Infectious Diseases

UNIVERSITY OF WASHINGTON INTERNATIONAL CLINICAL RESEARCH CENTER